
Vincent Claes 2009 Vincent Claes

Lab 4:

Integrating a picoblaze processor in LabVIEW

FPGA by use of CLIP node

Keywords: LabVIEW, LabVIEW FPGA, Xilinx SPARTAN3E Starter Kit,

VHDL, picoblaze, assembler, CLIP node.

Vincent Claes 2009 Vincent Claes

Introduction
Welcome to Lab 4 in the series of programming a SPARTAN3E

Starter Kit by use of LabVIEW FPGA. These labs are created by

Vincent Claes. If you encounter problems using this labs or

want some advice/consultancy on LabVIEW and especially LabVIEW

FPGA you can always contact the author.

These labs are free to use however to show respect to the

author please email him when you use them with your contact

details (feedback is also welcome).

Contact Information:

Vincent Claes

claesvincent@gmail.com

http://www.linkedin.com/in/vincentclaes

Software Requirements:

 LabVIEW 8.6 or above

 LabVIEW 8.6 FPGA module

 XUP Spartan3E starter board: download for free from:

https://lumen.ni.com/nicif/us/infolvfpgaxilsprtn/content.

xhtml

 CLIP XML Generator (CXG) 1.1.0 or above (see NI website)

 pBlazIDE (http://www.mediatronix.com/pBlazeIDE.htm)

 KCPSM3.vhd

 ROM_form.coe

 ROM_form.vhd

 KCPSM3.exe

Hardware Requirements:

 Xilinx Spartan3E Starter kit:

http://www.xilinx.com/products/devkits/HW-SPAR3E-SK-US-

G.htm

 User manual:

www.xilinx.com/support/documentation/boards_and_kits/ug23

0.pdf

Knowledge:

 Assembler

 VHDL

 CLIP node

 LabVIEW FPGA

mailto:claesvincent@gmail.com
http://www.linkedin.com/in/vincentclaes
https://lumen.ni.com/nicif/us/infolvfpgaxilsprtn/content.xhtml
https://lumen.ni.com/nicif/us/infolvfpgaxilsprtn/content.xhtml
http://www.mediatronix.com/pBlazeIDE.htm
http://www.xilinx.com/products/devkits/HW-SPAR3E-SK-US-G.htm
http://www.xilinx.com/products/devkits/HW-SPAR3E-SK-US-G.htm
http://www.xilinx.com/support/documentation/boards_and_kits/ug230.pdf
http://www.xilinx.com/support/documentation/boards_and_kits/ug230.pdf

Vincent Claes 2009 Vincent Claes

Step 1: Create LabVIEW FPGA

Project for Xilinx Spartan 3E

starter board.
Like in all the previous labs you have to setup a LabVIEW FPGA

Project where you add the Spartan 3E Starter board as a

target. If you have troubles doing this you best review labs

1-2 and 3.

Add as FPGA I/O the Slides Switches, the Push Buttons and the

Discrete LEDs (see figure below).

Vincent Claes 2009 Vincent Claes

Step 2: use pBlazIDE to program

a psm file that will run on the

picoblaze softcore processor.
Make sure you download pBlazIDE to program your picoblaze

application in assembler. Download it from:

http://www.mediatronix.com/pBlazeIDE.htm.

For this lab we don’t use it because we are going to use an

assembler program that I have created already for you.

Create a psm file (lvfpga.psm) in notepad and paste the

following code into it:

;Programmed by Vincent Claes

;http://pwo.fpga.be

INPUT s0, 00

OUTPUT s0, 01

JUMP 000

Since this is not a lab on assembler I am not going to explain

the code here. If you need support on coding the picoblaze

processor with your assembler code please see the following

file:

http://www.xilinx.com/support/documentation/ip_documentation/u

g129.pdf

Step 3: KCPSM3 tool to generate

a VHDL file.
In this step you are going to generate a VHDL file that

contains your program (see picoblaze user guide ug129.pdf)

Copy the following files into the map where you have the

labviewfpga.psm file created: KCPSM3.EXE, ROM_form.vhd,

ROM_form.coe and kcpsm3.vhd . You can find these files in the

solution zip file.

Go to the Windows command prompt and execute the following

command in the map where you have placed these files:

KCPSM3.EXE lvfpga.psm

If this exe gives the following output it is ok (the error

message about ROM_form.v is normal since we use the

http://www.mediatronix.com/pBlazeIDE.htm
http://www.xilinx.com/support/documentation/ip_documentation/ug129.pdf
http://www.xilinx.com/support/documentation/ip_documentation/ug129.pdf

Vincent Claes 2009 Vincent Claes

ROM_form.hdl – search in google for difference in verilog and

vhdl hardware description languages):

Check if in your map the lvfpga.hdl file is created.

Most of the problems I have seen are users who use a different

ROM_form.hdl that includes a BSCAN macro. LabVIEW FPGA will

then generate an error because you are using 2 BSCAN blocks

and there is only 1 available.

Step 4: Build top VHDL file to

connect the ROM and KCPSM3 hdl

file.
Now we have a description for our program in vhdl (lvfpga.vhd)

and our softcore picoblaze processor (kcpsm3.vhd). We need to

connect those 2 vhd files together to have a working system. I

will be doing this in another vhd file. You can do this also

in LabVIEW (maybe in another future lab ;-))

When building a new top vhd file we need to think about

LabVIEW variable types. You can read some thinks about it on

the NI website: http://zone.ni.com/devzone/cda/tut/p/id/7444.

Create a new .vhd file and name it picoblazesystem.vhd. (You

can create vhd files in notepad.)

Paste the following code into it:

-- Created by Vincent Claes

-- http://pwo.fpga.be

library IEEE;

http://zone.ni.com/devzone/cda/tut/p/id/7444

Vincent Claes 2009 Vincent Claes

use IEEE.STD_LOGIC_1164.ALL;

use IEEE.STD_LOGIC_ARITH.ALL;

use IEEE.STD_LOGIC_UNSIGNED.ALL;

entity picoblazesystem is

 Port (switches : in std_logic_vector(7 downto 0);

 LEDS : out std_logic_vector(7 downto 0);

 clk : in std_logic);

 end picoblazesystem;

architecture Behavioral of picoblazesystem is

-- declaration of KCPSM3 (always use this declaration to call up PicoBlaze core)

 component kcpsm3

 Port (address : out std_logic_vector(9 downto 0);

 instruction : in std_logic_vector(17 downto 0);

 port_id : out std_logic_vector(7 downto 0);

 write_strobe : out std_logic;

 out_port : out std_logic_vector(7 downto 0);

 read_strobe : out std_logic;

 in_port : in std_logic_vector(7 downto 0);

 interrupt : in std_logic;

 interrupt_ack : out std_logic;

 reset : in std_logic;

 clk : in std_logic);

 end component;

-- declaration of program memory (here you will specify the entity name as your .psm

prefix name)

 component lvfpga

 Port (address : in std_logic_vector(9 downto 0);

 instruction : out std_logic_vector(17 downto 0);

 clk : in std_logic);

 end component;

-- Signals used to connect PicoBlaze core to program memory and I/O logic

signal address : std_logic_vector(9 downto 0);

signal instruction : std_logic_vector(17 downto 0);

signal port_id : std_logic_vector(7 downto 0);

signal out_port : std_logic_vector(7 downto 0);

signal in_port : std_logic_vector(7 downto 0);

signal write_strobe : std_logic;

signal read_strobe : std_logic;

signal interrupt_ack : std_logic;

-- the following 2 inputs are assigend inactive values since they are unused in this

example

signal reset : std_logic :='0';

signal interrupt : std_logic :='0';

-- Start of circuit description

begin

 -- Instantiating the PicoBlaze core

 processor: kcpsm3

 port map(address => address,

Vincent Claes 2009 Vincent Claes

 instruction => instruction,

 port_id => port_id,

 write_strobe => write_strobe,

 out_port => out_port,

 read_strobe => read_strobe,

 in_port => in_port,

 interrupt => interrupt,

 interrupt_ack => interrupt_ack,

 reset => reset,

 clk => clk);

 -- Instantiating the program memory

 program: lvfpga

 port map(address => address,

 instruction => instruction,

 clk => clk);

 -- Connect I/O of PicoBlaze

 in_port <= switches;

 LEDS <= out_port;

end Behavioral;

Step 5: Use CLIP XML Generator

to generate the XML file.
Download the CLIP XML Generator from the NI website:

http://zone.ni.com/devzone/cda/epd/p/id/6068

Startup the CLIP XML Generator and select the Top-level VHDL

file (picoblazesystem.vhd).

http://zone.ni.com/devzone/cda/epd/p/id/6068

Vincent Claes 2009 Vincent Claes

Click “Add Path” and add the following vhd files: kcpsm3.vhd

and lvfpga.vhd

Vincent Claes 2009 Vincent Claes

Click the “next button”.

Move the “clk”, “LEDS” and “switches” to the LabVIEW Interface

“HDL Signal”.

Vincent Claes 2009 Vincent Claes

Make the following settings for the “Signal Type”, “Direction”

and “Data Type”, the “Freq Min” and “Freq Max” settings for

the clock are a little buggy  we will manipulate them in the

next paragraph (be carefully, those settings need to be

correct!):

Click the “Next button”.

Vincent Claes 2009 Vincent Claes

Click the “Finish” button.

Now go back to your map where you where working and see if

there is an picblazesystem.xml file. Open this fill with

notepad. In notepad we are going to set the “Freq Min” and

“Freq Max” settings for the clock.

Vincent Claes 2009 Vincent Claes

Place the value of 100M between the <Max> </Max> XML tags and

the value 1M between the <Min> </Min> tags, save the file and

close it.

Step 6: Import CLIP.
Now it is time to go back to your LabVIEW environment. Go to

the previously created LabVIEW FPGA project. Do a right

mouseclick on your Xilinx Spartan 3E Target.

Vincent Claes 2009 Vincent Claes

Check the “run when loaded to FPGA” checkbox and then select

the “Component Level IP” selection on the left side of this

window.

Vincent Claes 2009 Vincent Claes

In this new window click the “+” button.

Select “picoblazesystem.xml” and click the “OK button”.

Vincent Claes 2009 Vincent Claes

Now click the “OK button”.

Go back to the project explorer do a right mouse click on the

FPGA target and select “New” > “Component Level IP”.

Vincent Claes 2009 Vincent Claes

A new window appears; you have to select your

“picoblazesystem” in the “Component Level IP Declaration”

dropdown box.

Change also the name to “picoblazesystem”. The select in the

left corner of the window “Clock Selections”.

Vincent Claes 2009 Vincent Claes

Be sure that for the Component Level IP Clock “clk” the “Top-

Level Clock” is selected. Then Click the “OK button”.

In LabVIEW Explorer you now have to see the “picoblazesystem”

CLIP which has an output port “LEDS” and an input port

“switches”.

.

Vincent Claes 2009 Vincent Claes

Step 7: Build picoblaze LabVIEW

FPGA VI.

Now create a new FPGA vi. You can use the input and output of

your CLIP by selecting them in LabVIEW Explorer and dropping

them down in your “Block diagram” of the FPGA vi. As an

example you could build the following vi:

Now press the “Run” button to have a softcore “picoblaze”

running on your Xilinx Spartan 3E starter board with LabVIEW

FPGA.

Enjoy.

Vincent Claes

XIOS Hogeschool Limburg

Department of Industrial Sciences and Technology

Universitaire Campus - Agoralaan – Gebouw H

B-3590 Diepenbeek

Belgium

vincent.claes@xios.be

tel.: +32 11 26 00 39

fax: +32 11 26 00 54

mobile: +32 478 35 38 49

mailto:vincent.claes@xios.be

	Lab 4:
	Integrating a picoblaze processor in LabVIEW FPGA by use of CLIP node
	Introduction
	Step 1: Create LabVIEW FPGA Project for Xilinx Spartan 3E starter board.
	Step 2: use pBlazIDE to program a psm file that will run on the picoblaze softcore processor.
	Step 3: KCPSM3 tool to generate a VHDL file.
	Step 4: Build top VHDL file to connect the ROM and KCPSM3 hdl file.
	Step 5: Use CLIP XML Generator to generate the XML file.
	Step 6: Import CLIP.
	Step 7: Build picoblaze LabVIEW FPGA VI.

